Amphiphilic poly(alkylthiophene) block copolymers prepared via externally initiated GRIM and click coupling†

Chloe N. Kempf, Kendall A. Smith, Stacy L. Pesek, Xianyu Li and Rafael Verduzco*

Block copolymers with a poly(3-alkylthiophene) (P3AT) polymer block can self-organize into periodic, crystalline nanostructures that may be useful for organic electronic applications. However, reliable synthetic methods for the preparation of P3AT block copolymers are lacking. Here, we demonstrate a general method for the synthesis of P3AT rod-coil block copolymers via click-coupling of alkynyl-P3AT. Alkynyl-P3ATs are prepared via externally initiated Grignard metathesis polymerization (GRIM) using a modified nickel catalyst followed by end-group modification. The resulting alkynyl-P3ATs have improved stability and solubility compared with those previously reported. P3ATs are subsequently coupled to an azide-functionalized poly(ethylene glycol) through copper-catalyzed azide–alkyne click coupling, resulting in P3AT-b-PEG block copolymers. The advantages of this synthetic procedure are the improved stability of the alkynyl-P3AT macromer, the capability to synthesize high molecular weight P3AT polymer blocks, and facile determination of P3AT absolute molecular weight through 1H NMR analysis. This synthetic method is applied to prepare a series of P3AT-b-PEG block copolymers, with poly(3-hexyl thiophene) (P3HT), poly(3-dodecylthiophene) (P3DDT), and poly(3-(2-ethyl)hexylthiophene) (P3EHT) polymer blocks. The resulting P3AT block copolymers are dispersed in water to form micelles with crystalline, hydrophobic cores. Absorbance measurements show that crystallization of P3DDT and P3EHT blocks is suppressed in micellar cores due to nanoscale confinement of the P3AT blocks.

Introduction

Poly(3-alkylthiophenes) (P3ATs) are solution-processable polymeric semiconductors with significant potential for use in optoelectronic devices, including organic photovoltaics, thin film transistors, and light-emitting diodes. Regioregular P3ATs with a low polydispersity and targeted molecular weight can be prepared by Grignard metathesis polymerization (GRIM), and this has enabled systematic studies on the effects of molecular weight, side-chain, and regioregularity on structure and optoelectronic properties. GRIM also enables the preparation of block copolymers with P3AT polymer blocks. These types of block copolymers can self-assemble into regular nanostructures with crystalline order and may be particularly useful for applications in organic electronics. Common synthetic approaches for poly(3-hexylthiophene) (P3HT) block copolymers include the preparation of ω-allyl P3HT followed by attachment of an initiator for a second polymerization reaction and the preparation of ω-alkynyl P3HT and subsequent click coupling. However, ω-alkynyl P3HT prepared by GRIM using conventional methods is unstable, and while several reports have reported success with click coupling P3HT, other studies have reported poor coupling efficiencies. These methods are more successful with low-molecular weight P3HT polymers and can result in unreacted P3HT homopolymer impurities due to low coupling efficiencies or incomplete polymer end-functionalities.

Recently, several groups have demonstrated externally initiated regioregular P3HT via GRIM. The use of an externally added initiator enables the preparation of more complex polymeric structures such as brushes and block copolymers since functional groups for further reaction can be incorporated directly into the initiator complex. This potentially provides a straightforward and generally applicable synthetic route to make regioregular P3HT and P3AT block copolymers. In this work, we show that the use of externally initiated GRIM can be used to produce alkynyl-P3ATs which are stable against crosslinking under ambient conditions. These alkynyl-P3ATs are used to prepare P3AT rod-coil block copolymers through copper-catalyzed azide–alkyne click coupling.

Herein, we present an improved synthetic approach for the synthesis of poly(3-alkylthiophene) block copolymers via externally initiated GRIM and click chemistry. Three different
regioregular P3ATs – P3HT, poly(3-dodecylthiophene) (P3DDT), and poly(3-(2'-ethyl)hexylthiophene) (P3EHT) – are prepared using GRIM initiated by a functionalized nickel catalyst, and, after end-group modification, P3ATs are click coupled to azide-functionalized poly(ethylene glycol) (PEG). 1H NMR analysis provides end-group functionality and polymer molecular weight, and the method allows for the preparation of P3AT block copolymers with absolute P3AT block M_n greater than 15 kg mol$^{-1}$. We show that alkynyl-P3ATs produced through this synthetic route have improved stability and solubility compared with ω-alkynyl P3HT prepared by GRIM using conventional methods. P3AT-b-PEG block copolymers form spherical micelles when dispersed in water, and core crystallization is observed for P3AT cores with crystal melting temperatures $T_m > 150$ °C. This work demonstrates an improved method for preparing P3AT block copolymers and provides insight into the role of polymer crystal melting temperature on micelle core crystallinity.

Results and discussion

Synthesis of P3AT block copolymers

Our overall synthetic scheme involves the preparation of alkynyl-P3AT followed by click coupling to PEG, as shown in Schemes 1 and 2. The alkynyl functionality is incorporated via externally initiated GRIM using a functionalized Ni catalyst (3). Importantly, synthesis of the nickel complex (3) is straightforward and efficient. The Ni catalyst (3) is prepared in a one-pot, two-step reaction, as shown schematically in Fig. 1. First, the reaction of 1-chloro-2-methyl-4-[6-(t-butyldimethylsilyloxy)ethoxy] benzene (1) gives trans-chloro(aryl)bis(triphenylphosphine)nickel(0) complex (2). Analysis of the crude product by 31P NMR reveals a single peak at 21.1 ppm, in agreement with literature values. Next, an excess of 1,3-bis(diphenylphosphino)propane (dppp) is added to the reaction mixture, resulting in rapid ligand exchange and the formation of the desired $\text{Ni}(\text{PPh}_3)_4$ complex (3). Three peaks can be seen in the 31P analysis of (3). The broad peak at -4.4 ppm corresponds to liberated triphenylphosphine ligand in solution while the peaks at 12.1 and -14.5 ppm correspond to the functionalized Ni catalyst, in agreement with previous studies of similar chloro(o-tolyl)(dppp)nickel(0) complexes. 31P analysis therefore indicates full conversion of the Ni(PPh$_3$)$_4$ catalyst to the desired nickel(0) complex (3).

GRIM is initiated by addition of the crude reaction mixture containing (3) to a solution of 3-alkyl-2-bromo-5-chloro-magnesiophiophene in tetrahydrofuran (Scheme 1). After 1 hour, the polymerization is quenched by the addition of HCl, and the silane protecting group is removed by addition of n-tetrabutyl ammonium fluoride (TBAF) before precipitation of the polymer in methanol. The polymer end-group is modified through a Steglich esterification reaction with 5-hexynoic acid to yield alkynyl-P3AT.

Alkynyl-P3HT produced by GRIM using conventional methods is unstable under ambient conditions. Samples exhibit significantly reduced solubility and polymer cross-linking (see ESI Fig. S1†). Similar observations have been reported by others, and this can result in poor click coupling efficiencies. Conversely, alkynyl P3ATs prepared as shown in Scheme 1 are stable under ambient conditions for an extended period of time, up to 12 months. No evidence of degradation or crosslinking is observed for alkynyl-P3HT, and only a small amount of crosslinking is seen for alkynyl-P3DDT (see ESI Fig. S2†). Both P3AT macroreagents are also fully soluble after storage under ambient conditions for up to 11 months.

P3AT-b-PEG block copolymers are prepared by click coupling alkynyl-P3ATs with poly(ethylene glycol) methyl ether azide (PEG-N$_3$) (Scheme 2). The polymeric macroreagents are combined with $N_xN'N''N'''$-pentamethyldiethylentramine (PMDETA)–CuBr as the catalyst system in THF at 40 °C. An excess of PEG-N$_3$ reagent is used to ensure complete reaction of the alkynyl-P3AT. After 24 h, the reaction mixture is passed through a basic alumina column to remove catalyst and precipitated in methanol to recover the block copolymers. This latter step also removes the excess PEG-N$_3$ homopolymer.

1H NMR provides clear evidence for quantitative endgroup transformations and enables straightforward calculation of absolute polymer molecular weights (Fig. 2 and ESI Fig. S5–S13). Peaks corresponding to terminal ethoxy group appear at
Dedicated a high degree of endgroup functionality. Cannot exclude the possibility of unfunctionalized P3AT in the other P3HT blocks in similar P3HT-b-PEG copolymers. The present series of block copolymers enables us to investigate the role of P3AT crystal melting temperature on self-assembly and core crystallization. P3DDT and P3EHT block copolymers may exhibit reduced crystallinity due to the lower crystal melting temperatures of P3DDT (150 °C) and P3EHT (50 °C) compared with P3HT (220 °C). To disperse P3AT-b-PEG in water, block copolymers were first dissolved in THF at a concentration of 1 mg mL⁻¹. An equal amount of methanol was added to the THF solution before placing the THF–methanol solutions in a dialysis bag in DI water. After solvent exchange overnight, the solutions were filtered to obtain a clear solution free of insoluble aggregates. In all cases, successful dispersion of P3AT-b-PEG dispersions are lighter than P3HT-b-PEG and P3DDT-b-PEG dispersion in water, but P3EHT-b-PEG dispersions exhibit the strongest fluorescence under UV light (λ = 365 nm), indicative of reduced aggregation or crystallinity, as discussed below. As a control experiment, the

Self-assembly of P3AT-b-PEG in water

Recent work has demonstrated that amphiphilic P3HT rod-coil block copolymers can self-assemble in water to form micelles with P3HT-rich cores and PEG coronas. Depending on the solvent chosen and the block ratio, nanofibers can also be formed.²⁴,²⁵ The present series of block copolymers enables us to investigate the role of P3AT crystal melting temperature on self-assembly and core crystallization. P3DDT and P3EHT block copolymers may exhibit reduced crystallinity due to the lower crystal melting temperatures of P3DDT (150 °C) and P3EHT (50 °C) compared with P3HT (220 °C).

Fig. 1 Synthetic scheme for the preparation of modified nickel catalyst (left) and ³¹P NMR analysis of Ni catalyst (right).
same procedure was applied to P3AT homopolymers [see ESI Fig. S15†]. As expected, the P3AT homopolymers did not form micellar dispersions in water and the resulting solutions were clear. Dynamic light scattering analysis of the block copolymer dispersions in water indicates micelle formation with micelle sizes larger than 100 nm. These sizes are roughly consistent with measured particle sizes by atomic force microscopy measurements of dry micelles deposited on a silicon surface (see ESI Fig. S16†). Micelle sizes are measured to be larger in solution, as expected due to solvent swelling.

P3HT, P3DDT, and P3EHT are semi-crystalline polymers, and crystallization of the P3AT polymer blocks would be expected if the P3AT concentration is sufficiently enriched in the micelle cores. With the synthesized series of block copolymers, we can investigate the role of crystal melting temperatures, which vary from 220 °C for P3HT, to 150 °C for P3DDT, and 50 °C for P3EHT. The absorbance spectra for all block copolymers in a good solvent for both polymer blocks (THF) is qualitatively similar, with a broad absorbance maximum near 450 nm, as has been observed for the corresponding homopolymers (Fig. 4). This corresponds to a well solvated, non-crystalline P3AT-b-PEG polymers in solution. Qualitatively different absorbance spectra are observed for P3AT-b-PEG micellar solutions, with changes depending on the composition of the P3AT block. For P3EHT-b-PEG micelles, the absorbance maxima is shifted to slightly longer wavelengths, but the peak remains broad and featureless. P3DDT-b-PEG micelles exhibit a larger shift towards longer wavelengths with subtle vibronic features in the absorbance trace near 550 nm. P3HT-b-PEG micelles exhibit optical properties characteristic of P3HT thin films; the absorbance maximum is red shifted to wavelengths greater than 500 nm with distinct vibronic shoulders near 550 and 625 nm. The red-shift of the absorbance is consistent with

![Fig. 2](image)

Fig. 2 1H NMR spectra for P3AT endgroup and block copolymer linking group. Integrated areas of H_a, H_b, and H_c correspond to 2 protons per polymer chain. Integral area for H_d corresponds to 4 protons. Spectra shown are for P3HT, and full spectra for all polymeric reagents with integrated intensities are provided in the ESI Fig. S5–S13.

![Fig. 3](image)

Fig. 3 Solutions of P3AT and P3AT-b-PEG polymers dispersed in H$_2$O. P3AT block copolymer solutions exhibit fluorescence under UV light illumination, as shown in the right-hand frame ($\lambda = 365$ nm).
crystallization of the P3HT block in the micellar cores. The absorbance spectra also indicate that P3DDT exhibits some core crystallinity, while core crystallinity is almost completely suppressed for P3EHT-b-PEG micelles.

For comparison, crystallization of P3DDT-b-PEG and P3EHT-b-PEG thin films was analyzed by grazing-incidence wide-angle X-ray scattering (GIWAXS). Thin films were prepared by spinning-casting from a chloroform solution (10 mg mL$^{-1}$) onto clean silicon wafers. The resulting films were annealed above the crystal melting temperatures for the corresponding blocks and analyzed at room temperature. As shown in Fig. 5, clear crystal peaks are seen for both P3DDT and P3EHT block copolymers, indicative of polymer crystallization in thin films. These peaks are consistent with previous studies of P3AT homopolymer films. Small-angle X-ray scattering measurements indicate a single low-angle reflection at approximately 0.15 Å$^{-1}$ (see ESI Fig. S2†). These measurements show that P3AT blocks are crystalline, but confinement to a micellar core can suppress crystallization, depending on the crystal melting temperature of the P3AT block. Similar crystallization suppression has also been observed in P3HT all-conjugated block copolymers with minority P3HT polymer blocks.

Conclusions

We demonstrate a general approach for the preparation of alkynyl-P3ATs via externally initiated GRIM using a modified nickel catalyst. The advantages of this synthetic procedure are the stability of the resulting alkynyl-P3AT, the capability to synthesize relatively high molecular weight P3AT polymer blocks, and the facile determination of absolute molecular weight through 1H NMR analysis. Alkynyl-P3ATs were subsequently employed in a click coupling reaction to synthesize a series of P3AT-b-PEG block copolymers. The P3AT block copolymers were dispersed in water and shown to contain crystalline micellar cores, with significant suppression of core crystallization for P3EHT and P3DDT micelles. This is in contrast to the crystallization of the corresponding P3AT homopolymers in thin films. This work demonstrates a general and reliable method for the synthesis of P3AT block copolymers through click coupling and shows that confinement in a nanoscale micellar core can suppress P3AT crystallinity.

Acknowledgements

This work was supported by the Welch Foundation for Chemical Research (Grant no. C-1750), the Shell Center for Sustainability, and Louis and Peaches Owen. S. L. P. acknowledges support from the National Science Foundation Graduate Research Program. This material is based upon work supported by the National Science Foundation under Grant no. 0940902. X. L. acknowledges support from the Kobayashi Fellowship program. Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract no. DE-AC02-98CH10886. Authors acknowledge Dr Kevin Yager at Brookhaven National Laboratory for assistance with grazing-incidence X-ray scattering measurements. Use of the Center for Nanoscale Materials at Argonne National Laboratory was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract no. DE-AC02-06CH11357.

Notes and references